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Structuring and sampling complex conformation space: Weighted ensemble dynamics simulations
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Based on multiple simulation trajectories, which started from dispersively selected initial conformations, the
weighted ensemble dynamics method is designed to robustly and systematically explore the hierarchical struc-
ture of complex conformational space through the spectral analysis of the variance-covariance matrix of
trajectory-mapped vectors. The nondegenerate ground state of the matrix directly predicts the ergodicity of
simulation data. The ground state could be adopted as statistical weights of trajectories to correctly reconstruct
the equilibrium properties, even though each trajectory only explores part of the conformational space. Oth-
erwise, the degree of degeneracy simply gives the number of metastable states of the system under the time
scale of individual trajectory. Manipulation on the eigenvectors leads to the classification of trajectories into
nontransition ones within the states and transition ones between them. The transition states may also be
predicted without a priori knowledge of the system. We demonstrate the application of the general method
both to the system with a one-dimensional glassy potential and with the one of alanine dipeptide in explicit

solvent.
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I. INTRODUCTION

To explore the conformational space of physical systems,
standard molecular-dynamics (MD) and Monte Carlo (MC)
simulation methods have been applied for decades. All the
dynamic and thermodynamic information of a model system
could be extracted from a long enough ergodic simulation
trajectory. For complex systems with a rugged free-energy
surface, due to the existence of lots of free-energy barriers,
the standard methods are no longer promising for enough
sampling, which—as a result—impulses the development of
various advanced simulation techniques [1-8]. Despite the
success already achieved, it is still difficult to thoroughly
investigate a practically interesting system by a single trajec-
tory simulation with these advanced algorithms. Besides, to
ensure the convergence of simulation, a few trajectories may
need to be generated separately and then the difference be-
tween these trajectories could be measured [9] to sentence
the ergodicity of simulation under the simulated time scale.
Thus, it is reasonable to ask whether we could benefit from
the state-of-the-art distributed computation technique to ex-
plore the conformational space with multiple parallel gener-
ated simulation trajectories. Actually, one solution, e.g., the
ensemble dynamics (ED) method [10,11], has already been
well established to investigate the transition dynamics be-
tween specific states with thousands of short simulation tra-
jectories [12]. With a similar technique, but different spirit,
we develop a method for systematically discovering the
metastable states in conformational space and the transition
events between them. It could also be applied to more effi-
ciently sample the complex conformational space.

The method is based on three considerations. (1) Com-
pared to the single simulation trajectory, parallel generated
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trajectories, which started from dispersive initial conforma-
tions, are possible to cover a much larger area in conforma-
tional space with the same total simulation length. (2) Ergod-
icity broken simulation also provides meaningful
information of conformational space. Existing methods for
constructing the hierarchical state structure usually demand
thoroughly a sampling of the system either energetically [13]
or kinetically [ 14—18]. As a matter of fact, the state structure
is an effect of simulation time scale. With long enough ob-
servation time, the whole conformational space seems like
one state. Otherwise, the substates structure of the system
will emerge. Thus, even though each trajectory in ED is not
ergodic, their mutual relation will reflect the state structure of
the system under the time scale of the individual simulation
trajectory. (3) The short ED trajectories could be combined
to give out equilibrium properties of the system. Weighted
histogram analysis method [19] is one existing technique to
combine several trajectories by estimating the density of
states in energy space. In ED, since every trajectory is gen-
erated by the same MD (or MC) simulation, we could simply
specify a statistical weight to each trajectory to reconstruct
the equilibrium distribution. The weighting scheme leads to
the name of our method: weighted ensemble dynamics
(WED).

Given multiple MD trajectories generated by the same
algorithm and condition, WED provides a way to systemati-
cally understand the information in existing data without re-
quiring much foreknowledge. It classifies the trajectories into
nontransition ones within the metastable conformational re-
gions (states) and transition ones between these states. The
trajectories inside the same state could be combined to
mimic the intrastate equilibrium distribution, and some of the
transition trajectories could be shortened to locate the well-
defined transition state ensemble. Based on the existing data,
further exploration of the system could be efficiently guided
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The paper is organized as follows. The theory of WED
will be introduced in Sec. II. The results and discussions are
presented in Sec. III. A short conclusion is given in Sec. IV.
Finally, the detailed simulation methods are listed in the Ap-
pendix.

II. THEORY

Let us consider a set of 7 length, normally simulated MD
(or MC) trajectories. The distribution of their initial confor-
mations P;,;(§) will evolve along the trajectories to the equi-
librium distribution P,,(§) with long enough 7. Here § gen-
erally denotes the conformation coordinates of the system.
The time for approaching equilibrium is dependent on the
deviation of P,,;(g) from P, (§). Instead of waiting for the
final equilibration, we may specify each trajectory a statisti-
cal weight. Then, the equilibrium ensemble average of any
physical quantity A(g) could be estimated by

Zwi<A(q)>i
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(1)

where, w; is the weight of the ith trajectory. (...),, and (...);
denote the average over the equilibrium distribution and the
ith trajectory, respectively.

Considering the deviation of P,,;(§) from P,(q), we
could choose

Po(Gio) 2
Pinit(q_)iO)

as w;. Here g is the initial conformation of the ith trajectory.
For example, if the initial conformations were chosen from
the simulation with modified potential U(g), we could set
w;cexp[ BU(G:n)—BV(Gip)] to reproduce the equilibrium
properties of the original system with the potential V(§).
However, this normal weighting scheme demands the knowl-
edge of P,,;,(¢) and usually suffers from the enormous fluc-
tuation of {Qmi,,gq(ciio)} in systems with large degrees of free-
dom. As a result, only a few trajectories with dominating w;,
could significantly contribute to the weighted average.
Actually, while the length of simulation trajectories 7 is
not very short, the conformational space could be divided
into a few metastable regions, wherein a single trajectory
could reach local equilibrium within 7. Thus, for trajectories
that started from the same metastable region, the specified
weights—although dependent on the initial conformations—
should be approximately identical when reproducing the
equilibrium properties. Therefore, we could write

o fa(i)Peq(q)dq)
fa(i)Pinit((i)d(j’

where a(i) denotes the metastable region, in which the ith
trajectory is started. Instead of explicitly using Eq. (3), we
simply construct a new ensemble of conformations X in prac-
tice. X is constituted by the conformations in the initial 7 time
length of all the simulation trajectories. Within short enough
7 (compared to 7), each trajectory is supposed to be still

Qinit,eq(‘jiO) =

3)
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exploring the same metastable conformational region, lead-
ing to the quite plausible conclusion that [,Px(§)dg
= [ ,Pini(§)dg for all the metastable regions. Here, o denotes
the metastable region in consideration; Py(§) denotes the dis-
tribution function of the conformations in X (all the distribu-
tion functions are supposed to be normalized). Consequently,
Px(G), instead of P;,;(¢), could be used to estimate the tra-
jectory weights as follows:

= PE (_))
w;= <QX,eq(q)>i+ = <qué>i+' (4)

Here, (- -+);+ denotes the average over the initial 7-length seg-
ment of the ith trajectory, i.e.,

<M@»E§fﬁwﬁﬂmz (5)
0

for any conformational function A(g). Here g;(¢t') denotes the
conformation at ¢’ time in the ith trajectory. Heuristically, by
averaging (y,.,(4) over the initial short segment of each
trajectory, we are calculating {w;} according to the initial
regions of the trajectories rather than solely by the initial
conformations.

Although the analytical expression of Px(§) is unknown,
considering the general relation,

(Qx (DA x = (A(G)) g (6)

for any conformational function A(g), we could linearly ex-
pand Qy,,(§) with a complete set of conformational func-
tions (also referred to as basis functions in the following)

{AM(@)}, as

QX,eq(q) =1+ E g,u,V(PX)<5XA'U((q))>eq5XAV(q) > (7)
N

where, oyA*(§) =A*(§)—(A*(§))x and g,,,(Py) is the inverse
of the variance-covariance matrix g””(Py), which is defined
as (OyA*M(§) 6xA"(§))x with (---)y denoting the average over
X samples. In Eq. (7), the equilibrium ensemble average
(6xA*(G)),, actually relies on the trajectory weights {w;}
through Eq. (1). Thus, substituting Eq. (7) into Eq. (4) gives
out the following self-consistent linear equations of {w;},

wi=1+2Tw;, (®)
J

where Fij:‘,I;E;L,Vg,uv(PXX5XAM(q_))>i+<5XAV(q_)» j> i’j: 1 s D
p is the number of trajectories, and we already set =w;=p.
All the parameters in Eq. (8) could be calculated simply by
averaging basis functions over simulation trajectories. Since
the current formulation is exempted from any information
about P;,;(g), initial conformations could be arbitrarily se-
lected from different sources, such as coarse-grained simula-
tion, high-temperature simulation, experimental knowledge,
or even theoretical conjecture, then the conformational space
could be more efficiently traversed and structured.

Equation (8) could be written as Giw=0, (i=1,... D),

where éi=(Gi1,...,Gip)T is the vector with components
GijEFij_‘sij"',]_ﬂ (i,j=1,...,p), and &; is the Kronecker
delta symbol. W=(wy,...,w,)" is the vector of trajectory
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weights, which could be thought as the normal vector of the

hyperplane spanned by the trajectory-mapped vectors {é’}
The equations could be further adjusted to the following
form:

Hw=0, 9)

by minimizing the residual I=2,(G'-15—0)2 Here H=GG is
the covariance matrix of the vectors {é’} Compared to Eq.
(8), Eq. (9) is easier for an analytical treatment due to the
symmetric form of H. It is also more general in application.
For example, when multiple trajectories are generated from
one initial conformation for better statistics, thus, the number
of trajectories is larger than the number of independent
weights; Eq. (9) still works.

There are a few key points in the WED method. (1) H is
a positive semidefinite matrix with at least one zero eigen-
value. If the conformational space is well connected by
simulation trajectories, the ground state of H will be nonde-
generate, which uniquely determines the trajectory weights.
Otherwise, if the simulation trajectories are isolated in dif-
ferent conformational regions by large free-energy barriers,
H will have degenerate ground state (i.e., multiple zero ei-
genvalues), leaving the relative weights between trajectories
in different regions indeterminable. When a few trajectories
connecting the different regions exist, the zero eigenvalues
of H will be perturbed to small nonzero values. The small-
eigenvalue eigenvectors of H could be manipulated to extract
the information of conformational states and transitions be-
tween them. This data mining process is usually performed

by projecting {G'} to the small-eigenvalue eigenvectors.

Since {G'} one to one corresponds to the simulation trajecto-
ries, the projection effectively maps the trajectories into low-
dimensional space for subsequent classification. In the fol-
lowing, we align the eigenvectors of H by their eigenvalues
with an ascending order, e.g., the first eigenvector is the one
corresponding to the smallest eigenvalue of H. The larger-
eigenvalue eigenvectors mainly reflect the intrastate statisti-
cal fluctuation among trajectories.

(2) Although the expansion in Eq. (7) is exact if and only
if the set of conformational functions is complete, it is not
necessary to include too many basis functions in WED. This
is because only the mean values of {y,(g) over a large
number of conformation samples, instead of the values of
Oy .,(§) for different conformations, are required in the con-
struction of the linear equations of {w;} [Egs. (8) and (9)]. In
practice, only physically relevant and important quantities of
the simulation system need to be selected as basis functions
to distinguish conformational metastable states. The selec-
tion does not demand much foreknowledge. For biological
macromolecules, the important inner coordinates, such as di-
hedral angles and pair distances, could be chosen as basis
functions to characterize the conformational motion. Various
physical quantities, such as the potential energy of the sys-
tem, solute-solvent interactions could also be included for
the searching of related kinetic or thermodynamic phenom-
ena. The variance-covariance matrix g*” will ensure the con-
sistent consideration of different classes of basis functions
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and provide the measure of their relative importance (after
orthogonalizing the basis functions based on g*”).

(3) There is only one free parameter in WED method 7*
=7/ 7 for collecting the X samples. Large 7 may bring sys-
tematical error to the estimated equilibrium properties, and
small 7* will reduce the sample number in X, leading to a
larger statistical uncertainty. 7=0.01~0.1 is usually applied
in the current work with satisfiable results obtained. We also
point out that for the purpose of discovering the states in
conformational space, the results are not very sensitive to 7.

III. RESULTS AND DISCUSSIONS

A. System with one-dimensional glassy potential

We first illustrate the WED method in a one-dimensional
system with glassy potential. There are four major potential
wells, respectively, located around the positions —1.25,
-0.25, 0.75, and 1.75 in this system [see the inset of Fig.
1(b)]. We name these potential wells with the positions of
their minima in the following. For each WED simulation,
400 trajectories are generated with the initial conformations
randomly selected in the interval of [-2.0,2.0]. The system
is investigated under five temperatures of 0.3, 0.6, 0.7, 1.1,
and 2.0. More details are shown in the Appendix.

The simulation trajectories and the ten smallest eigenval-
ues of H for WED analyses under different temperatures are
shown in Fig. 1. At T=0.3, there is no simulation trajectory
connecting the different potential wells. As temperature in-
creases, transition events emerge, and the total number of
transition trajectories increases fast [see Fig. 1(a)]. Corre-
spondingly, four zero (or almost zero) eigenvalues of H are
found at 7=0.3 [see Fig. 1(b)]. As temperature increases, the
fourth smallest eigenvalue begins to deviate from zero due to
the transition trajectories between potential wells —1.25 and
—-0.25. At T=0.7, due to the several transition trajectories
between potential wells —0.25 and 0.75, the third eigenvalue
is also lifted to small positive value. Subsequently at T
=1.1, except for the smallest one, all the other eigenvalues
are prominently deviating from zero. However, since only
limited fraction of trajectories can pass the highest-energy
barrier in the system, the second smallest eigenvalue is still
relatively small (about 0.1). Finally at 7=2.0, there is only
one near-zero eigenvalue left, indicating the ergodicity of the
simulation data as a whole.

For WED simulation at 7=1.1, since there is only one
zero eigenvalue of H, we could uniquely determine the tra-
jectory weights to reproduce the equilibrium distribution (or
energy curve) of the system. Although, only part of the WED
trajectories are found to be able to pass the highest potential
barrier (either once or more), thus, single trajectory is far
from ergodic, the energy curve of this system is correctly
reproduced by reweighting the simulation trajectories [see
Fig. 2(a)]. For further testing, we build a 150-trajectory sub-
set from all the 400 trajectories, so that the distribution of the
initial conformations of the 150 trajectories is very different
from that of all the 400 trajectories. In practice, the subset
involves all the 75 trajectories initially inside the 1.75 poten-
tial well and 75 ones that are randomly chosen from the
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FIG. 1. (Color online) Trajectories, eigenvalues of H, and pro-
jection map of one-dimensional system. (a) Trajectories simulated
at four different temperatures with a one-dimensional glassy poten-
tial. All 400 trajectories are plotted except for 7=2.0, where only 20
randomly selected ones are plotted. The horizontal axis denotes the
reduced simulation time with the full simulation time scaled to 1.0.
The vertical axis denotes the coordinate of one-dimensional system.
(b) The first ten eigenvalues of H at five temperatures. The one-
dimensional glassy potential is also shown as inset. (c) The projec-
tion of {éi} to the second, third, and fourth eigenvectors of H (T
=0.6). The points enclosed by dashed rectangles (red) representing
nontransition trajectories in the four major potential wells 1.75,
0.75, —=0.25, and —1.25 are gathering, respectively, inside the four
regions enclosed by dashed-edge squares. The correspondence be-
tween states and regions is labeled in the graph. The other points
(cyan) represent the transition trajectories between states. See the
main text for more details.

remaining 325 trajectories initially outside the 1.75 potential
well. With the subset of trajectories, we reconstruct Eq. (9),
recalculate the trajectory weights, and use the weights and
the 150 trajectories to reproduce the equilibrium distribution
of the system. The energy curve is again correctly predicted
as shown in Fig. 2(a). More intuition could be perceived
from Fig. 2(b), where the trajectory weights for both the
original 400-trajectory data set and the 150-trajectory subset
are shown. For the 150-trajectory data set, the fraction of
conformations outside the 1.75 potential well is reduced a
lot, thus, the trajectories which started outside the 1.75 po-
tential well are specified larger weights in response. The
changing of trajectory weights offsets the changing of the
initial distribution of the trajectories, leading to the same
reconstructed energy curve. Besides, the weight of a trajec-
tory is found to be mainly dependent on the potential well
from where the trajectory is started rather than the initial
conformation of the trajectory, consistent with our supposi-
tion in the derivation of Eq. (9).
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FIG. 2. (Color online) Reconstructed energy curve and the tra-
jectory weights of one-dimensional system. (a) The energy curves
reconstructed with 150-trajectory (black upward triangles) and 400-
trajectory (red downward triangles) data set are shown together
with the theoretical curve (blue solid line). The three lines almost
overlap with each other. (b) Trajectory weights for 150-trajectory
(black upward triangles) and 400-trajectory data set (red downward
triangles) are shown. The horizontal axis denotes the initial position
of trajectories. The weights has been scaled to ensure the equal
average weight of trajectories from 1.75 potential well for the two
data sets. The potential energy is also shown as solid line.

At lower temperature of 7=0.6, the ground state of H is

degenerate. We project G' to the second, third, and fourth
eigenvectors of H, which maps each trajectory i to the point

-

(L,L5,LY) in a three-dimensional space. Here L= Gl
ii, is the ath eigenvector of H, and L] is always zero. In the
three-dimensional space, the 400 trajectories could be classi-
fied as shown in Fig. 1(c). There are four highly concentrated
groups, respectively, with 77, 2, 37, and 66 points of almost
the same coordinates. The points in these groups are verified
to represent the nontransition trajectories in the potential
wells 1.75, 0.75, —0.25, and —1.25, respectively. The 119
[Eq. (9)] points located along the line connecting —1.25 and
—0.25 (in the plane of —1.25, —0.25, and 0.75) correspond to
transition trajectories between potential wells —1.25 and
-0.25 (-0.25 and 0.75).

With the classification of trajectories, the equilibrium
properties in each potential well could be estimated by the
nontransition trajectories inside. Moreover, considering the
119 transition trajectories between potential wells —1.25 and
—0.25, it is possible to further extract more detailed informa-
tion of the superstate containing these two states. We trun-
cate the ending segment of each trajectory and repeat the
analysis (i.e., reconstructing H, analyzing its spectral proper-
ties, etc.). For the trajectories in the superstate containing
~1.25 and —0.25, we plot the {L}} calculated with truncated
trajectories (at 0.87) versus those with the full trajectories in
Fig. 3(a). In this figure, a one-to-one correspondence be-
tween the data points and the simulation trajectories exists,
which helps to further classify the trajectories as follows. (i)
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FIG. 3. (Color online) Trajectory identification and shortening
for locating transition state ensemble in one-dimensional system.
(a) {Li} calculated with truncated trajectories (at 0.87) versus those
with the full trajectories. Only data for trajectories, which started
from the potential wells —1.25 and —0.25, are shown. The nontran-
sition trajectories in —1.25 and —0.25 are shown as upward and
downward triangles, respectively, and the transition trajectories
which started from the two states are plotted as (blue) circles and
(red) squares, respectively. The straight lines are plotted by hand,
and the arrows indicate the intersection points between dash-dotted
horizontal lines and dashed-inclined lines. The inset illustrate the
truncation of one simulation trajectory at the normalized time ¢/ 7
=0.8. (b) For the supposed single-transition trajectories, short
(0.027) trajectory segments centered by the predicted transition
times are shown. The upper panel shows the predicted transitions
from the potential wells —1.25 to —0.25; the lower panel shows the
transitions predicted to be in the reversed direction. The horizontal
axes denote the reduced simulation time with the full simulation
time scaled to 1.0.

The data points could be approximately separated into two
groups. Those in the same group correspond to the trajecto-
ries which started from the same state (either —1.25 or
—0.25). (ii) The data points with extremal L} values along
both axes correspond to the nontransition trajectories. No
matter whether truncated or not, these trajectories are always
nontransition ones and should always be similar to each
other in L, value. (iii) Except for the points corresponding to
the nontransition trajectories, the other points in the dash-
dotted horizontal lines in Fig. 3(a) correspond to the transi-
tion trajectories where transition before 0.87 does not hap-
pen. These trajectories become nontransition ones only after
truncation and should have similar truncation-calculated L,
values. Besides, we also find that (iv) the data points in the
dashed-inclined lines correspond to trajectories with an odd
number of transitions, which all happen within 0.87. (v) The
ones in the dotted inclined lines correspond to trajectories
with even number of transitions, which all happen within
0.87. (vi) All the other points outside the straight lines in Fig.
3(a) correspond to the trajectories with early transitions oc-
curred within 7, and the multiple transition trajectories with
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transition happened both within 0.8 7 and after 0.87. Noticing
that the truncation of trajectories actually adjusts the occupa-
tion fraction of the trajectories in different states, the ob-
served allocation from (iv) to (vi) could be explained by
supposing the existence of the linear relation between {Lf‘}
and the occupation fraction of trajectories in different states.

Since there are considerable fraction of nontransition tra-
jectories within 7, we could safely assume that almost all the
odd-transition trajectories are actually single-transition tra-
jectories. Thus, their transition time should be linearly de-
pendent on their occupation fraction in different states.
Therefore, the linear relation between transition time and L,
value should exist for these putative single-transition trajec-
tories. To predict the linear relation, there are two key points
in Fig. 3(a), corresponding to the two intersection points be-
tween dash-dotted horizontal lines and dashed-inclined lines.
These two points correspond to single-transition trajectories,
which started from different potential wells (—1.25 and
—0.25), and happen transition at 0.87. By truncating the tra-
jectories to different lengths (e.g., 0.57, 0.67, 0.77, 0.87, and
0.97) and reproducing the analogous figures to Fig. 3(a), a
few pairs of key points could be collected. Two sets of linear
relations between transition time and L} value for the sup-
posed single-transition trajectories could be determined,
which apply, respectively, to the —1.25-started trajectories
(trajectories started from the —1.25 potential well) and the
—0.25-started trajectories.

For all the transition trajectories in the dashed-inclined
lines and dash-dotted horizontal lines in Fig. 3(a), 0.027 tra-
jectory segments centered by the predicted transition times
are shown in Fig. 3(b). Except for one trajectory, which is
nontransition in 0.87 and happens twice transitions after
0.8, the other trajectories all pass the potential barrier be-
tween —1.25 and —0.25 within the predicted time windows.
We could expect that for systems with well-defined transition
states, it is always possible to efficiently shorten the transi-
tion trajectories to locate the transition state ensemble. Simi-
lar example for the solvated alanine dipeptide system will be
shown in Sec. III B.

B. System of solvated alanine dipeptide

The alanine dipeptide molecule is shown in Fig. 4 (left
panel). There are only two important main chain dihedral
angles ¢ and ¢ in this system. The 22-atom molecule is
solvated in 522 TIP3P waters. 500 conformations are first
collected from a 10 ns simulation of the system at T
=600 K. The projections of these conformations to the ¢
— i plane are shown in Fig. 4 (right panel). These conforma-
tions are mainly located in the three free-energy wells on the
¢— ¢ plane, i.e., C57 and ay with negative ¢ value (488 in
500) and C5* with a positive ¢ value (12 in 500). C5" is less
stable compared to C57 and ay. Starting from each of these
conformations, the system is simulated for 300 ps (or 600
ps). More details are shown in the Appendix.

There exists only one zero eigenvalue of H under both
temperatures of 7=450 K and T=300 K [see Fig. 5(a)],
suggesting that the equilibrium properties of the system
could be reproduced with current simulation data. The trajec-
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FIG. 4. (Color online) Illustration of alanine dipeptide molecule
and the selected initial conformations from 600 K simulation. In the
left panel, the alanine dipeptide molecule is shown with the two
important dihedral angles ¢ and i labeled. In the right panel, the
500 initial conformations of WED simulation are projected onto the
¢- plane (red stars), taking their dihedral angles as coordinates.
The background is the free-energy surface on ¢-¢ plane recon-
structed with the WED analysis of 450 K data.

tory weights estimated by WED are shown in Fig. 5(b). At
T=450 K, the weights of the C%-started trajectories (trajec-
tories started from C%7) have similar mean value and fluctua-
tion with those of the aj-started trajectories. In contrast, the
weights of the C4"-started trajectories are partially depressed
to smaller values.

At T=300 K, the weights of the C/-started trajectories,
as a whole, are slightly smaller than those of the ajp-started
trajectories [see Fig. 5(b), right panel]. With current simula-
tion data, the lifetime of C57 and a are estimated to be 30.5
and 25.2 ps at T=300 K (the corresponding values are 9.5
and 10.3 ps at T=450 K). Consequently, some of the 300 ps
trajectories may not be able to reach equilibrium between
these two states. Thus, to reconstruct the equilibrium distri-
bution in the region containing C57 and ay, it is inevitable to
specify diversified weights to different trajectories, which ex-
plains the slight difference in trajectory weights between the
C%%-started and the ap-started trajectories. In comparison
with T=450 K, the weights of the C7*-started trajectories are
further depressed in response to the further instability of C5*
at lower temperature.

Adding potential barriers onto the standard dihedral en-
ergy terms of ¢ and ¢, we resimulate 500 trajectories with
7=600 ps and analyze these trajectories with WED method.
These potential barriers will kinetically further separate the
three free-energy wells of C5%, ag, and C5" (see the Appendix
for more details). As a result, two zero (or near-zero) eigen-
values of H are found [see Fig. 5(a)], predicting two groups
of simulation trajectories secluded in different free-energy
wells. Consistently, the projection values of {éi} to the sec-
ond eigenvector of H (i.e. {L3}) classify all the 500 trajecto-
ries into two groups (see Fig. 6, left panel). While 12 trajec-
tories in one group are located inside C5*, the remaining 488
trajectories could be further classified based on their L val-
ues, considering the small value of the third eigenvalue of H.
These 488 trajectories are identified as nontransition trajec-
tories in the two states C57 and ay and transition trajectories
between them. In the Lé-Lg plane, they lie along a straight
line almost parallel to the Lj axis, with the nontransition
trajectories gathering at the two terminals of the line (with
extremal Lg values, see Fig. 6, right panel). By independently
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FIG. 5. (Color online) Eigenvalues of H, trajectory weights, and
reconstructed free-energy surface for solvated alanine dipeptide sys-
tem. (a) The eigenvalues of H for solvated alanine dipeptide system
with different temperatures and force fields. “300 K mod” labels the
results of 300 K simulation with modified potential. (b) The calcu-
lated trajectory weights for simulations at 450 K (left panel) and
300 K (right panel) with standard force field. The horizontal axis
denotes the ¢ angle of the initial conformations of trajectories. The
trajectories started from C5%, ap, and C5" regions are plotted as (red)
upward triangles, (blue) downward triangles, and (black) circles,
respectively. (c) The free-energy curve along i axis constructed by
the weighted trajectories simulated with modified potential at 300
K. The curve labeled with (black) upward triangles is obtained with
all the 488 trajectories in C57 (224 in 488) and aj (264 in 488); the
one labeled with (red) downward triangles is constructed with half
of the trajectories started from ap omitted.

analyzing the 488 trajectories, the weights of these trajecto-
ries could be obtained to construct the equilibrium distribu-
tion of the superstate containing C5? and aj. The resulting
free-energy profile along ¢ is shown in Fig. 5(c). We ran-
domly throw away half of the trajectories that started from
ag (e.g., 132 of 264 trajectories) and redo the WED analysis
for the remaining 356 trajectories. Although the conforma-
tions in @y have been (approximately) reduced by half, the
estimated weights of the remaining aj-started trajectories are
indeed almost doubled relative to the previous values. Con-
sequently, the reconstructed free-energy profile closely
matches the previous one, suggesting the robustness of WED
method.

Similar to the one-dimensional system with glassy poten-
tial, for the 488 trajectories in C57 and ay potential wells, we
also find the linear relation between the L} value and the
occupation fraction of trajectories. Analogous figure to Fig.
3(a) is plotted in Fig. 7(a). The predicted transition times for
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200
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FIG. 6. (Color online) Projection map of solvated alanine dipep-
tide system simulated at 300 K with modified force field. In the left
panel, the projection of {G’} to the second and third eigenvectors of
H are shown. The points enclosed by dashed rectangles (red circles)
representing the nontransition trajectories in the three free-energy
wells of C5%, ag, and C5* are gathering, respectively, inside the
three regions enclosed by dashed-edge squares. The correspondence
between states and regions is labeled in the graph. The other points
(cyan circles) represent the transition trajectories between states.
See the main text for more details. In the right panel, the histogram
of Lé value for trajectories in C57 and ay is shown to illustrate the
concentration of trajectories at the extremal values of L.

the putative single-transition trajectories [trajectories with
their representing points located on the dashed inclined lines
in Fig. 7(a)] are in great agreement with their real transition
times directly identified along the simulation trajectories [see
Figs. 7(b) and 7(c)]. The fraction of the trajectories, which
happen transition within the 6 ps (12 ps) time windows cen-
tered by their predicted transition times, reaches 75% (93%)
percent. For illustration, the predicted 6 ps segments of three
trajectories are shown in Fig. 7(d).

IV. CONCLUSION

We present the WED scheme for systematically exploring
the kinetic state structure of conformational space. WED
works by automatically discovering the mutual relation be-
tween parallel generated trajectories. It could also combine
partially overlapped trajectories in conformational space to
estimate the equilibrium properties of complex systems with
rugged potential-energy surface. The method works well
without existing experimental or simulation knowledge of
the system and may not suffer much from increasing system
dimension by only applying relevant physical quantities as
basis functions. Exempted from the knowledge of the initial
conformational distribution, WED provides flexibility to
choose as dispersive as possible start points of trajectories in
the whole conformational space. For example, initial confor-
mations could come from simulations at different tempera-
tures, as well as theoretically and experimentally important
conformations (e.g., completely or partially folded structures
of proteins). After arbitrarily adding back the missing de-
grees of freedom and short relaxation, it is also possible to
adopt coarse-grained simulation conformations as starting
points of WED simulation. Since the detailed substates in
shorter time scales could be detected by sequentially chop-
ping the trajectories and repeating our analysis, the hierarchi-
cal state structure of the free-energy landscape [16] could be
distilled out up to the total simulation time scale. Finally, for
slow transition dynamics, which is impractical to be realized
by simply increasing trajectory number, the combination of
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FIG. 7. (Color online) Trajectory identification and shortening
for locating transition states in the system of solvated alanine dipep-
tide. (a) Lg calculated with truncated trajectories (at 0.87) versus
those with full trajectories for the simulations with modified poten-
tial at 7=300 K. Only data for trajectories which started from ay
and C%7 are shown. The nontransition trajectories in ag and C57 are
shown as upward and downward triangles, respectively, and the
transition trajectories started from the two states are plotted as
(blue) circles and (red) squares, respectively. The straight lines are
plotted by hand, and the arrows indicate the intersections between
dash-dotted horizontal lines and dashed inclined lines. (b) The pre-
dicted transition time 7, for the supposed single-transition trajecto-
ries versus their real transition time 7,. The 7,=1, relation is plotted
as (red) dashed line for comparison. (c) The error of the predicted
transition time versus the real transition time. (d) Illustration of
transition paths. Three 6-ps-length segments of trajectories around
their predicted transition time are shown with different symbols.
The background is the free-energy surface reconstructed from 300
K simulation trajectories with modified potential.

WED with current techniques for studying two-point slow
dynamics [6-8] should be interesting.
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APPENDIX
1. Simulation and analysis method for one-dimensional system

For a one-dimensional system with coordinate x and po-
tential function U(x), the overdampened Langevin equation
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dv__1dU
di  ydx

2kpT

Y
is adopted to generate the dynamical trajectories of x, where
v is the frictional coefficient, kp is the Boltzmann constant, 7
is the simulation temperature, and &(z) is the white noise
satisfying (&(¢) €('))=8(t—1") with { ) denoting ensemble av-
erage of noise. We simply take kz and 7y as unity to get the
dimension-reduced units for time, position, and temperature.
Reflecting boundary condition is assigned for all the simula-
tions.

The analytical expression of a one-dimensional glassy po-
tential is as follows:

+

&) (A1)

(., X< =20
1 +sin(2mx), -20<x<-1.25
2[1 +sin(2mx)], —1.25<x<-0.25
U(x) =§ 3[1 +sin(2mx)], -0.25<x<0.75
4[1 +sin2my)], 0.75<x<1.75
5[1+sin(2mx)], 1.75<x<2.0
& x>2.0.

For ED simulations, 400 initial positions are randomly se-
lected in [-2.0,2.0] interval. Each trajectory is simulated for
50 time length, and the frames are recorded every 0.01 time
length. In analysis, *=0.02 is chosen, corresponding to
40 000 conformations in the X sample.

The one-dimensional trigonometrical functions

X mnx

cos(—),sin(—) mn=1,2,3,... (A2)
2 2

are selected as basis functions in the analysis. The first 20
basis functions, e.g., m, n, both from 1 to 10, are included in
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the calculation. Similar results could be obtained with ten
basis functions, with m and n both from 1 to 5. To recon-
struct the energy curve by WED method, a 40-bin histogram
is generated. The theoretical curve is calculated by integrat-
ing the theoretical equilibrium distribution inside each bin.

2. Simulation and analysis method for alanine dipeptide with
explicit solvent

The alanine dipeptide, a 22-atom small peptide molecule,
is solvated in 522 TIP3P water molecules with totally 1588
atoms in the system. All the simulations are performed under
NVT ensemble (constant particle number, constant volume,
and constant temperature) with NAMD simulation package
[20] and Charmm?27 force field. The Langevin thermostat is
chosen to keep the temperature of the system, with a damp-
ing coefficient of 5 ps~!. Periodic boundary condition is im-
posed. The system has a box size of 259 AX24.5 A
x27.8 A, and Particle Mesh Ewald (PME) method is ap-
plied to calculate the electrostatic energy with PME grid size
chosen as 32 along all the directions. Van de Waals interac-
tion is cut off at 12 A and switched to zero from 10 A. In
the WED simulations, the first 1 ps simulation for each tra-
jectory is taken as relaxation, then each trajectory is simu-
lated for 300 ps with conformations recorded every 0.5 ps
(300 K and 450 K simulation with standard force field) or
600 ps with conformations recorded every 0.2 ps (300 K
simulation with modified force field).

To mimic a disconnected free-energy landscape under 300
K temperature for this system, we added the following style
of boundary potential on the Charmm27 force field for se-
lected dihedral angles:

f
COS(X = Xiow) = cOs(Ax)

Eo
f(X7Xlow’Xhigh’AX’E0) = <

1 —cos(Ay)

c0S(X = Xnign) — cos(Ax)

EO? Xiow — AX < X < Xlow

Xiow < X < Xhigh

LO’

where y is the degree of freedom on which the modified
potential acts. X;,,, and Xj,,, are the lower and upper bound-
aries for the potential function. Within the boundary, the po-
tential function is identically equal to E;. Out of the bound-
ary, the potential function will reduce to zero within Ay
length. The angles are measured with degree, and the energy
unit is kcal/mol. Three potential functions f(i,—155,
-150,10,8.5), f(¢$,0,10,15,12), and f(¢,130,140,15,4)
are added by NAMD simulation package to modify the free-
energy surface. f(,-155,-150,10,8.5) adjusts one of the

1 —cos(Ay)

Eo,  Xnigh < X < Xnigh — AX

Xhigh < X < Xiow T 360’

two free-energy barriers between C57 and ay, lifting the one
at —150° of ¢ angle to approximately the same height as the
one at 25°. The other two free-energy functions are used to
separate C5* with the other free-energy wells in conforma-
tional space.

In the WED analysis, we first choose physically important
quantities as basis functions. The selected physical quantities
include the potential energy of the whole system, the square
of potential energy, the sum of all dihedral energies in ala-
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nine dipeptide, and the sum of all bonded energies (bond,
angle, and dihedral energies) in alanine dipeptide. The physi-
cally selected basis functions are then complemented by two-
dimensional trigonometrical functions of dihedral angles ¢
and . These functions are

sin[(m + n)¢],cos[(m +n)p],m +n >0,

sin(m)sin(nip),sin(me)cos(nip),
cos(ma)sin(niy),cos(me)cos(nip),m = 1,n = 1.
(A3)

We define the summation of m and n in Eq. (A3) as the order
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of these functions and adopt the one to four order functions
in our analysis. Together with the physical quantities, there
are 44 basis functions included in the calculation. However,
the results obtained with or without the physical basis func-
tions are basically the same. The 12 basis functions of one
and two order trigonometrical functions could already repro-
duce the results in current paper. The ¢* value of 0.05 is
adopted to analyze the simulation data at 450 and 300 K with
a standard force field. The one of 0.02 is adopted to analyze
the simulation data at 300 K with a modified force field. To
reconstruct the free-energy surface, the interval of [
—180,180], either for ¢ or #, is divided into 36 bins for
histogram construction.
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